Presetting basal ganglia for volitional actions.

نویسندگان

  • Masayuki Watanabe
  • Douglas P Munoz
چکیده

The basal ganglia (BG) have been considered as a key structure for volitional action preparation. Neurons in the striatum, the main BG input stage, increase activity gradually before volitional action initiation. However, because of the diversity of striatal motor commands, such as automatic (sensory driven) and volitional (internally driven) actions, it is still unclear whether an appropriate set of neurons encoding volitional actions are activated selectively for volitional action preparation. Here, using the antisaccade paradigm (look away from a visual stimulus), we dissociated neurons in the caudate nucleus, the oculomotor striatum, encoding predominantly automatic saccades toward the stimulus and volitional saccades in the opposite direction of the stimulus in monkeys. We found that before actual saccade directions were defined by visual stimulus appearance, neurons encoding volitional saccades increased activity with elapsed time from fixation initiation and by a temporal gap between fixation point disappearance and stimulus appearance. Their activity was further enhanced by an antisaccade instruction and correlated with antisaccade behavior. Neurons encoding automatic saccades also increased activity with elapsed time from fixation initiation and by a fixation gap. However, the activity of this type of neuron was not enhanced by an antisaccade instruction nor correlated with antisaccade behavior. We conclude that caudate neurons integrate nonspatial signals, such as elapsed time from fixation initiation, fixation gap, and task instructions, to preset BG circuits in favor of volitional actions to compete against automatic actions even before automatic and volitional commands are programmed with spatial information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixational saccades reflect volitional action preparation.

Human volitional actions are preceded by preparatory processes, a critical mental process of cognitive control for future behavior. Volitional action preparation is regulated by large-scale neural circuits including the cerebral cortex and the basal ganglia. Because volitional action preparation is a covert process, the network dynamics of such neural circuits have been examined by neuroimaging...

متن کامل

Neurophysiology of gait for understanding basal ganglia motor disorders - from animal behaviors to the constructive approach -

We elucidated substrates for the execution of normal gait and to understand pathophysiological mechanisms of gait failure in basal ganglia dysfunctions. In Parkinson’s disease, volitional and emotional expressions of movement processes are seriously affected in addition to the disturbance of automatic movement processes, such as adjustment of postural muscle tone and rhythmic limb mov...

متن کامل

Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia.

A dominant basal ganglia (BG) model consists of two functionally opposite pathways: one facilitates motor output and the other suppresses it. Although this idea was originally proposed to account for motor deficits, it has been extended recently also to explain cognitive deficits. Here, we employed the antisaccade paradigm (look away from a stimulus) to address the role of the caudate nucleus, ...

متن کامل

Roles of the primate motor thalamus in the generation of antisaccades.

In response to changes in our environment, we select from possible actions depending on the given situation. The underlying neural mechanisms for this flexible behavioral control have been examined using the antisaccade paradigm. In this task, subjects suppress saccades to the sudden appearance of visual stimuli (prosaccade) and make a saccade in the opposite direction. Because recent imaging s...

متن کامل

A computational model of inhibitory control in frontal cortex and basal ganglia.

Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect of human behavior. At the core of the interplay between these 2 control systems lies an override mechanism that can suppress the habitual action selection process and allow executive control to take over. Here, we construct a neural circuit model informed by behavioral and electrophysiol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 30  شماره 

صفحات  -

تاریخ انتشار 2010